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An elliptic equation for a layered regularly inhomogeneous (composite) material serves as an example for 

the introduction of new integral transforms that enable boundary-value problems to be solved in 

quadratures, without the need to solve boundary-layer problems. These integral transforms are used to 

solve simple boundary-value problems for a layered composite and to obtain a fundamental solution of an 

elliptic equation in an infinite two-dimensional laminar medium. 

THE DIFFICULTY of solving boundary-value problems for strongly inhomogeneous t~omposite) 
materials is due to the rapid oscillation of the coefficients of the equations. For materials of periodic 
structure these coefficients are periodic functions. If the period is small compared with the 
characteristic dimensions of the problem, asymptotic averaging may be applicable [l-3]. This 
method yields an asymptotically correct approximation to the exact solution (for small values of the 
structure period E), based on solving an averaged problem for a homogeneous (or rather, 
homogenized) material and “local” problems over one period. Far from the boundaries of the 
domain, averaging gives a good approximation to the exact solution even in the zeroth approxima- 
tion (see [l, 21). Near the boundary, however (i.e. at distances commensurate with E), the use of this 
method is fraught with difficulties. 

The boundary layer method [I] can be used to find an asymptotic solution for the problem near 
the boundary (see also [4]). The boundary layer method has been applied [5,6] to the problem of a 
macrocrack in the pe~odical~y structured composite material. However, the use of the method 
involves the need to solve boundary layer problems (see fl, 4-X5]), which are considerably more 
difficult than local problems. For example, in the simplest case of a layered composite, the local 
problems can be solved exactly [ 1, 21, but the boundary layer problems are amenable to numerical 
solution only (see [6]). 

1. Consider the following boundary-value problem for a periodically structured layered compo- 
site, defined in the upper half-plane x2 >O (see Fig. 1): 
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FIG. 1. 

Instead of the Dirichlet condition (1.2) at x2 = 0 there may be a Neumann condition 

hi(e) (zr) aulaz~ Ix*=0 = --Q (zr) (1.3) 

It is then assumed that 
$00 

s q (2J dcc~ = 0. 
-0D 

Let us assume that the coefficients of Eq. (1.1) are rapidly oscillating s-periodic functions of x1 
(&Gl). Set 

A,(E) (Zl) = A, (y), y = X1/E, a = 1, 2 

where h,(y) are singly periodic functions of y. We shall also assume that h,(y) are piecewise 
smooth functions, with discontinuities of the first kind on the contact line(s) of the different 
constituents of the composite; at the points of discontinuity of the coefficients certain matching 
conditions, corresponding to ideal contact, are satisfied: 

Iul = 0, [h,aulaql = 0 (1.4) 

These problems model the steady temperature distribution or antiplane elastic stress-strain state 
of a layered composite material of periodic structure. 

2. Before attempting to solve such problems analytically, we have to consider the following 
auxiliary problem: it is required to expand a piecewise-smooth functionf(X) in terms of solutions of 
the equation 

(A@) (z!) 2’)’ + pap@’ (z) 2 = 0, 0 < 5 < 00 (2.1) 

Ate) (a$ = A (v), pte) (2) = P (sr) 

where y = X/E and A (y) and p(y) are singly periodic, piecewise-smooth functions of y; the prime 
denotes differentiation with respect to X. 

To solve the auxiliary problem we use the method proposed in [7], considering the problem 

az a (Ate) (3) 2) = p(e) (57) + (2.2) 

Using the Laplace transformation 

u Lo = f (4 
/l’ 

2 (2, p) = 1 u (2, t) e+ dt 
0 

(2.3) 

(2.4) 
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we deduce from (2.2) and (2.3) that 

(A@) (z) 2’)’ - pp’@ (z) 2 = --p(e) (z) f (5), 0 < 5 < 00 (2.5) 

The solution of the homogeneous equation with singly periodic coefficients 

(A (Y) 2’)’ - PP (Y) z = 0 (2.6) 

will be sought as a double-scaled asymptotic expansion [l-3]; 

2 = zo (5) + r..I +I ($7 Y) (2.7) 

where zk(x, y) (k = 1,2,3, . . .) are singly periodic functions of y. An application of the asymptotic 
averaging procedure [l-3] yields a proof of the following lemma. 

Lemma 1. The full asymptotic expansion (2.7) for a solution of Eq. (2.6) has the form 
00 

z =zow+ c EkNK (y) * 

k=l 
(2.8) 

where zo(x) is a solution of the equation 

zo” (x) - pxaz, (X) = 0, X2 = (A--‘) (p) (2.9) 

and N,(y) are singly periodic functions of y which are solutions of the recursive chain of local 
problems 

= -$ (A(!dNk-l(y))- 

-_A@) dNkf --A(y)'Nka(y) + x-2&-a(Y)P(& k = 1~2% 3, * * * (2.10) 

IV-1 (y) = 0, No (Y) = 1 

with matching conditions at the points of discontinuity of A (y ) and p(y): 

[N,] = 0, i-4 (d&&, + Nk-x)1 = 0 (2.11) 

These functions Nk(y ) are determined by solving problems (2.10) and (2. ll), apart from constant 
terms Nko = Nk (0), which may be determined by imposing additional conditions on Nk ( y ). 

The asymptotic expansion (2.8) for solutions of Eq. (2.6) may be justified rigorously by standard 
techniques [4]. Let z @) denote the partial sums of the series (2.8): 

mf1 

c k 
z(m) = ekNkb) $'$ 

k=O 

Substituting z@) mto Eq. (2.6) and using (2.9) and (2.10), we obtain an expression for the 
truncation error: 

P(z- 2’“‘) = em(AN;+,)’ g- + 
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Here P is the operator on the left of Eq. (2.6), and the prime denotes ordinary differentiation with 

respect to y. 
If Eq. (2.6) has smooth coefficients and the boundary conditions for z(x) and zc(x) are identical 

over some interval [0, r] (this may be ensured by proper choice of the constant terms Nm), then the 
generalized maximum principle for solutions of differential equations implies the estimate 

II 2 - Z(m) llcto, I] = 0 (0 

If the coefficients of Eq. (2.6) are merely piecewise-smooth and one has matching conditions of 
type (1.4) and accordingly also (2.11) in the formulation of the local problems, then, besides the 
theoretical justification of (2.8), one must also verify that the asymptotic solution zCrn) satisfies the 
matching conditions with a fairly high degree of accuracy with respect to E. This may be done as 
shown in [l, pp. 49-521. 

The reader should note that the averaging in (2.9) and later is done using the rule 

(p> = s’ P(Y) dY* 
0 

Proceeding now to treat the non-homogeneous equation (2.5) we choose the following functions 
as linearly independent particular solutions of Eq. (2.9): 

z,(r) (2, p) = ch (~&r), zo@) (z, p) = ,fir (2.12) 

We can then prove the following lemma. 

Lemma 2. If the functions (2.12) are taken as the linearly independent particular solutions of Eq. 
(2.9), one obtains the following linearly independent solutions of Eq. (2.6) from (2.8): 

z(l) = (kjo aarpkX2ki&1, (y)) ch (I/&-r) + 

+ (kjo ’ ak+lpk+%xak+l&,k+l (y)) sh ( fjk) (2.13) 

z@) = (,$ (- i)k 8kpk’rxkNk ( y)) e- rw 

The Wronskian is given by the formula 

w (ZW,, ZW) = - - 

m-1 
(2.14) 

where d,,, (m = 1, 2, 3, . . .) are constant numbers given by the following expressions: 

4n = A (Y) { 2 Nlrn-al (f+ + A$,) -my iv2rn-‘dn_1 (* + Nan+J} (2.15) 
n=o , 

n=a 

In particular, the constants Nko may be chosen in such a way that 

d, = 0 (m = 1, 2, 3, . . .) 

and in that case, instead of (2.14), we have the simple formula 

(2.16) 
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w (z(l), da’) = --x f&4 (y) (A-‘)) (2.17) 

Note that formulas (2.15) and (2.16) uniquely define the constants NM, so that these conditions, 
supplementing the local problems (2.10) and (2. ll), uniquely define the functions Nk ( y ) 
(k = 1,2,3, . . .). 

By Lemma 2, the general solution of the non-homogeneous equation (2.5) may be written as 

s(++f p(e) (E) f (U G (G El P) dE (2.18) 
0 

da) (G P) z(1) (E, P) p-“, 
G (X7 Ey p) = ( z(l) (x, p) 2(Z) (E, p) p-x, 

E < 5 
E > x 

We now return from the Laplace transform (2.18) to the source function, carry out some 
reduction and set t = 0 [see (2.3)], to obtain the proof of the following theorem, which solves our 
problem of expanding a function in terms of solutions of Eq. (2.1). 

Theorem 1. Any piecewise-smooth function can be expressed as an integral transform as follows: 

f(x) = I/$! ZF)(~, lW&)dC1 (2.19) 
0 

where 

(2.20) 

(2.21) 

Nk(n/&) are singly periodic functions of y = X/E, which are solutions of the recursive chain of local 
problems (2.10) and (2.11) with conditions (2.15) and (2.16)-the latter determine NH). The 
function zCCe)(x, t.r,) is a solution of Eq. (2.1). 

Remark 1. The local problems (2.10) and (2.11) are ordinary differential equations and are solvable by 
quadratures. In particular, 

1 
Nl (v) = - Y + <A-l> s 

A-’ (&) d& + NIO 

0 

Np (u) = - y’/2 + y/2 + (i/2 + NIO - Y) 0% (v) - Nd - 

-x4 (NI (u) - ( ~~~+sj(~A-~(q)dllS~(E)4)-Sr(rl)dtlSp(E)d&}+N~ 
0 0 0 0 

Remark 2. Conditions (2.15) and (2.16) may be written as a recursive system of algebraic equations in the 
constants Nko (k = 1, 2, 3, .): 
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where 

4 = N,,C, + C, - N,,C, = 0 

4 = N,,Cl + N,,C, + C, - N,oC, - N,oC, = 0 
(2.22) 

4 = No.& + N,,C, + NJ, + C, - N,t,C, - N,,C, - N&e - 0, . . . 

In particular, we can set 

and define Nra, Nae, . . . by 

ck = (AdNkh + AN,_,) iv=,, 

Nso = N,, = NI, - . . . = 0 (2.23) 

N,, = C&s, Nso = C&s - C&,/Co” (2.24) 

Nbo = CrIC, - c,c&s + c,c,llc,s - c,ce/c*s, . . . 

If that is done it follows from (2.21) that 

%@) (2, P) I,, = i (2.25) 

Remark 3. In the limiting special case when Eq. (2.1) has constant coefficients, 

A@) (z) = A = const, pte) (z) = p = const 

Equations. (2.6) and (2.9) are the same and by solving the local problems (2.10) under conditions (2.15) and 
(2.16), we obtain 

Nk(I/)-O, k=i,2,3 ,... (2.26) 

It follows from (2.21) that 

PC(e) (5, IA) = co9 (xpz) 

and if A = p (respectively, x = 1) the integral transform (2.19) and (2.20) is simply the Fourier cosine 
transform. Thus, (2.19)-(2.21) is a generalization of the Fourier cosine transform to the case in which the 
coefficients of Eq. (2.1) are rapidly oscillating c-periodic functions. 

3. To obtain an analogue of the Fourier sine transform, we take the linearly independent 
particular solutions of Eq. (2.9) to be 

z&r) (5, p) = sh (l/pxz), zo@) (z, p) = e-,‘~= 

Here we can prove the following theorem. 

(3.1) 

Theorem 2. For any piecewise-smooth function f(x) one has the following integral transform: 

f (z) = I/$ j z!“’ (G. P) F, (P) dp (3.2) 
0 

Fe (p) = 1/G (G )” 1 pee) (t) f (E) 8’ (El. p) dE 
0 

2:“’ (2,. p) = [ 1+ jf+ ekNk ($) $1 sin (xp) 

k=t 

(3.3) 

(3.4) 
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where N~(x/E) are singly periodic functions of y = X/E, which are solutions of the recursive chain of 
local problems (2.10) and (2.11), the constants N M) being determined by conditions (2.15) and 
(2.16). The function z, (E)(.x, u) is a solution of Eq. (2.1). 

Remark 4. In the solution of the algebraic equations (2.22), instead of (2.23) and (2.24) one can set 

N,, = N,, = N,, = . . . = 0 

and determine NzO, Nm, . . . from the equations 

N,, = -C&, N,, = C,%ZIz - C,iC,, . . . 

In that case the expansion (3.4) gives 

G(e) (5, P),, = 0 

Remark 5. In the limiting special case 

Ace) (5) = p(e) (2) = cpnst 

we conclude, as in Remark 4, that the transform (3.2)-(3.4) is simply the Fourier sine transform 

(3.5) 

4. We will now use the above integral transforms to solve problems (1.1) and (1.4) with condition 
(1.2) on the boundary of a half-plane. Using (2.19), we will seek the solution in the form 

-m 
2 

u= 
v s -z- z?’ 6% P) u, (% cl) dP (4.1) 

0 

where .z,(~)(x~, p) is a solution of Eq. (2.1) with 

Are) (r) = & (Y), P (a$ = A-, (Y) (4.2) 

Substituting (4.1) into (1.1) and using (2.1) and (4.2), we obtain an equation for the function 

Uc(x2, F): 

a2u, b, p)/a222 - qu, (x2, CL) = 0 (4.3) 

A solution of this equation which is bounded as a function of x2 is 

UC (x2, P) = C (f-4 e-*‘xt (4.4) 

Substituting (4.4) into (4.1), setting x2 = 0 and using (1.2), we obtain 

Returning in (4.5) to the source function of the transform (2.20), we find that 

Substituting (4.4) and (4.5) into (4.1), we get the required solution in quadratures: 

(4.5) 

(4.6) 

The treatment of problems (1.1) and (1.4) with condition (1.3) is analogous. We then obtain 
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Note that the method will also work for boundary-value problems with mixed conditions on the 
boundary. 

5. We will now obtain a fundamental solution of Eq. (1.1) in the case when 

hr(@ (51) = h&e) (Xl) = h (y) 

i.e. we shall use the integral transforms (2.19)-(2.21) to solve the equation 

(5.1) 

The solution will be sought in the form 

lL= v s f OD u (r2, p) 2’ (q, p) dp (5.2) 

substituting A(“)(xl) = p(&)(xl) = h(y) intoT2.1) and (2.20). 
In view of (2.19), (2.20) and (2.25), we obtain the following representation for the b-function: 

h-l(y) 6 (q) = f(S)” 1 zg) (21, p) dp 

0 

Substituting (5.2) and (5.3) into (5.1), we get 

The solution of Eq. (5.4) is 

and then 

In view of the representation (2.21), this expression may be written in the form 

Since 

the required fundamental solution of Eq. (5.1) is 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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In the limiting special case when h(y) = 1, relations (2.26) and formula (5.6) give the well-known 
expression for the fundamental solution of the two-dimensional Laplace equation. 
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OSCILLATIONS OF AN ELASTIC BODY WITH INTERNAL 
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A method is proposed for solving dynamical problems for a viscoelastic body (the Kelvin-Voigt model) in a 

massless viscous medium. Interaction with the external medium produces on the boundary of the body 

stresses proportional to the rate of displacement. The model of external friction is that used for modelling 

dynamical processes in elastic media filling an infinite domain [l, 21. The implementation of numerical 

methods of solution requires an equivalent restatement of the problem in a finite domain, using external 

viscous friction to allow for the radiation of energy at infinity. 

FROM THE mathematical point of view, the eigenvalue spectral problem in the presence of friction is 
not self-adjoint and the eigenfunctions are not orthogonal. For an elastic body with friction, the 
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